CoolPotOS/src/kernel/task.c
2024-09-02 16:02:08 +08:00

419 lines
12 KiB
C

#include "../include/task.h"
#include "../include/common.h"
#include "../include/graphics.h"
#include "../include/io.h"
#include "../include/description_table.h"
#include "../include/vfs.h"
#include "../include/timer.h"
#include "../include/shell.h"
#include "../include/heap.h"
#include "../include/elf.h"
#define SA_RPL_MASK 0xFFFC
#define SA_TI_MASK 0xFFFB
#define GET_SEL(cs, rpl) ((cs & SA_RPL_MASK & SA_TI_MASK) | (rpl))
struct task_struct *running_proc_head = NULL;
struct task_struct *wait_proc_head = NULL;
struct task_struct *current = NULL;
extern page_directory_t *kernel_directory;
extern void switch_to(struct context *prev, struct context *next);
extern void taskX_switch(struct context *prev, struct context *next);
int now_pid = 0;
int can_sche = 1;
struct task_struct *get_current() {
return current;
}
static uint32_t padding_up(uint32_t num, uint32_t size) {
return (num + size - 1) / size;
}
void print_proc_t(int *i, struct task_struct *base, struct task_struct *cur, int is_print) {
if (cur->pid == base->pid) {
if (is_print) {
switch (cur->state) {
case TASK_RUNNABLE:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Running");
break;
case TASK_SLEEPING:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Sleeping");
break;
case TASK_UNINIT:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Init");
break;
case TASK_ZOMBIE:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Zombie");
break;
case TASK_DEATH:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Death");
break;
}
}
(*i)++;
} else {
if (is_print) {
switch (cur->state) {
case TASK_RUNNABLE:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Running");
break;
case TASK_SLEEPING:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Sleeping");
break;
case TASK_UNINIT:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Init");
break;
case TASK_ZOMBIE:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Zombie");
break;
case TASK_DEATH:
printf("%-17s %-2d %s %d\n", cur->name, cur->pid, "Death");
break;
}
}
(*i)++;
print_proc_t(i, base, cur->next, is_print);
}
}
int get_procs() {
int index = 0;
print_proc_t(&index, current, current->next, 0);
return index;
}
void print_proc() {
int index = 0;
print_proc_t(&index, current, current->next, 1);
printf("====---------------[Processes]----------------====\n");
printf("Name Pid Status MemUsage [All Proc: %d]\n\n", index);
}
static void
found_task(int pid, struct task_struct *head, struct task_struct *base, struct task_struct **argv, int first) {
struct task_struct *t = base;
if (t == NULL) {
argv = NULL;
return;
}
if (t->pid == pid) {
*argv = t;
return;
} else {
if (!first)
if (head->pid == t->pid) {
argv = NULL;
return;
}
found_task(pid, head, t->next, argv, 0);
}
}
struct task_struct *found_task_pid(int pid) {
struct task_struct *argv = NULL;
found_task(pid, running_proc_head, running_proc_head, &argv, 1);
if (argv == NULL) {
printf("Cannot found task Pid:[%d].\n", pid);
return NULL;
}
return argv;
}
void wait_task(struct task_struct *task) {
task->state = TASK_SLEEPING;
}
void start_task(struct task_struct *task) {
task->state = TASK_RUNNABLE;
}
void task_kill(int pid) {
io_cli();
struct task_struct *argv = found_task_pid(pid);
if (argv == NULL) {
printf("Cannot found task Pid:[%d].\n", pid);
return;
}
if (argv->pid == 0) {
printf("\033ff3030;[kernel]: Taskkill cannot terminate kernel processes.\033c6c6c6;\n");
return;
}
argv->state = TASK_DEATH;
printf("Taskkill process PID:%d Name:%s\n", argv->pid, argv->name);
free_tty(argv);
struct task_struct *head = running_proc_head;
struct task_struct *last = NULL;
while (1) {
if (head->pid == argv->pid) {
last->next = argv->next;
kfree(argv);
io_sti();
return;
}
last = head;
head = head->next;
}
}
void schedule(registers_t *reg) {
io_cli();
if (current && can_sche) {
change_task_to(reg,current->next);
}
}
void change_task_to(registers_t *reg,struct task_struct *next) {
if (current != next) {
struct task_struct *prev = current;
current = next;
page_switch(current->pgd_dir);
set_kernel_stack(current->stack + STACK_SIZE);
prev->context.eip = reg->eip;
prev->context.ds = reg->ds;
prev->context.cs = reg->cs;
prev->context.eax = reg->eax;
prev->context.ss = reg->ss;
switch_to(&(prev->context), &(current->context));
reg->ds = current->context.ds;
reg->cs = current->context.cs;
reg->eip = current->context.eip;
reg->eax = current->context.eax;
reg->ss = current->context.ss;
}
}
int32_t user_process(char *path, char *name){ // 用户进程创建
can_sche = 0;
if(path == NULL){
return -1;
}
uint32_t size = vfs_filesize(path);
if(size == -1){
return -1;
}
io_cli();
struct task_struct *new_task = (struct task_struct *) kmalloc(STACK_SIZE);
assert(new_task != NULL, "user_pcb: kmalloc error");
// 将栈低端结构信息初始化为 0
memset(new_task, 0, sizeof(struct task_struct));
new_task->state = TASK_RUNNABLE;
new_task->stack = current;
new_task->pid = now_pid++;
page_directory_t *page = clone_directory(kernel_directory);
new_task->pgd_dir = page;
new_task->mem_size = 0;
new_task->program_break = USER_START + 0xf0000;
new_task->program_break_end = USER_HEAP_END;
new_task->name = name;
new_task->isUser = 1;
new_task->tty = kmalloc(sizeof(tty_t));
init_default_tty(new_task);
extern char root_disk;
vfs_change_disk(new_task,root_disk);
io_sti();
page_switch(page);
for (int i = USER_START; i < USER_END + 0x1000;i++) { //用户堆以及用户栈映射
page_t *pg = get_page(i,1,page, false);
alloc_frame(pg,0,1);
}
for (int i = USER_EXEC_FILE_START; i < USER_EXEC_FILE_START + size; i++) {
page_t *pg = get_page(i,1,page, false);
alloc_frame(pg,0,1);
}
char* buffer = USER_EXEC_FILE_START;
memset(buffer,0,size);
vfs_readfile(path,buffer);
Elf32_Ehdr *ehdr = buffer;
if(!elf32Validate(ehdr)){
printf("Unknown exec file format.\n");
return -1;
}
uint32_t main = ehdr->e_entry;
load_elf(ehdr,page);
uint32_t *stack_top = (uint32_t * )((uint32_t) new_task + STACK_SIZE);
*(--stack_top) = (uint32_t) main;
//*(--stack_top) = (uint32_t) buffer;
*(--stack_top) = (uint32_t) kthread_exit;
*(--stack_top) = (uint32_t) switch_to_user_mode;
new_task->context.esp = (uint32_t) new_task + STACK_SIZE - sizeof(uint32_t) * 3;
// 设置新任务的标志寄存器未屏蔽中断,很重要
new_task->context.eflags = (0 << 12 | 0b10 | 1 << 9);
new_task->next = running_proc_head;
page_switch(kernel_directory);
// 找到当前进任务队列,插入到末尾
struct task_struct *tailt = running_proc_head;
assert(tailt != NULL, "Must init sched!");
while (tailt->next != running_proc_head) {
tailt = tailt->next;
}
tailt->next = new_task;
can_sche = 1;
io_sti();
return new_task->pid;
}
int32_t kernel_thread(int (*fn)(void *), void *arg, char *name) { // 内核进程(线程) 创建
io_cli();
struct task_struct *new_task = (struct task_struct *) kmalloc(STACK_SIZE);
assert(new_task != NULL, "kern_thread: kmalloc error");
// 将栈低端结构信息初始化为 0
memset(new_task, 0, sizeof(struct task_struct));
new_task->state = TASK_RUNNABLE;
new_task->stack = current;
new_task->pid = now_pid++;
new_task->pgd_dir = kernel_directory;
new_task->mem_size = 0;
new_task->isUser = 0;
extern header_t *head;
extern header_t *tail;
extern void *program_break;
extern void *program_break_end;
current->head = head;
current->tail = tail;
current->program_break = program_break;
current->program_break_end = program_break_end;
new_task->name = name;
new_task->tty = kmalloc(sizeof(tty_t));
init_default_tty(new_task);
uint32_t *stack_top = (uint32_t * )((uint32_t) new_task + STACK_SIZE);
*(--stack_top) = (uint32_t) arg;
*(--stack_top) = (uint32_t) kthread_exit;
*(--stack_top) = (uint32_t) fn;
new_task->context.esp = (uint32_t) new_task + STACK_SIZE - sizeof(uint32_t) * 3;
// 设置新任务的标志寄存器未屏蔽中断,很重要
new_task->context.eflags = 0x200;
new_task->next = running_proc_head;
// 找到当前进任务队列,插入到末尾
struct task_struct *tailt = running_proc_head;
assert(tailt != NULL, "Must init sched!");
while (tailt->next != running_proc_head) {
tailt = tailt->next;
}
tailt->next = new_task;
io_sti();
return new_task->pid;
}
void kthread_exit() {
register uint32_t val asm ("eax");
printf("Task [PID: %d] exited with value %d\n", current->pid,val);
task_kill(current->pid);
while (1);
}
void kill_all_task() {
struct task_struct *head = running_proc_head;
while (1) {
head = head->next;
if (head == NULL || head->pid == running_proc_head->pid) {
return;
}
if (head->pid == current->pid) continue;
task_kill(head->pid);
}
}
#define SA_RPL3 3
void switch_to_user_mode(uint32_t func) {
io_cli();
set_kernel_stack(current->stack + STACK_SIZE);
unsigned esp = USER_END;
current->context.eflags = (0 << 12 | 0b10 | 1 << 9);
intr_frame_t iframe;
iframe.edi = 1;
iframe.esi = 2;
iframe.ebp = 3;
iframe.esp_dummy = 4;
iframe.ebx = 5;
iframe.edx = 6;
iframe.ecx = 7;
iframe.eax = 8;
iframe.gs = GET_SEL(4 * 8, SA_RPL3);
iframe.ds = GET_SEL(4 * 8, SA_RPL3);
iframe.es = GET_SEL(4 * 8, SA_RPL3);
iframe.fs = GET_SEL(4 * 8, SA_RPL3);
iframe.ss = GET_SEL(4 * 8, SA_RPL3);
iframe.cs = GET_SEL(3 * 8, SA_RPL3);
//set_tss_ss0(iframe.ss);
iframe.eip = func; //用户可执行程序入口
iframe.eflags = (0 << 12 | 0b10 | 1 << 9);
iframe.esp = esp; // 设置用户态堆栈
intr_frame_t *a = &iframe;
asm volatile("movl %0, %%esp\n"
"popa\n"
"pop %%gs\n"
"pop %%fs\n"
"pop %%es\n"
"pop %%ds\n"
"iret" ::"m"(a));
}
void init_sched() {
// 为当前执行流创建信息结构体 该结构位于当前执行流的栈最低端
current = (struct task_struct *) kmalloc(sizeof(struct task_struct));
current->state = TASK_RUNNABLE;
current->pid = now_pid++;
current->stack = current; // 该成员指向栈低地址
current->pgd_dir = kernel_directory;
current->name = "CPOS-System";
current->mem_size = 0;
current->next = current;
current->isUser = 0;
init_default_tty(current);
extern header_t *head;
extern header_t *tail;
extern void *program_break;
extern void *program_break_end;
current->head = head;
current->tail = tail;
current->program_break = program_break;
current->program_break_end = program_break_end;
running_proc_head = current;
klogf(true,"Load task schedule. | KernelTaskName: %s PID: %d\n",current->name,current->pid);
}