Add MathJax tests.

This commit is contained in:
_ 2023-04-16 23:35:15 +08:00 committed by Eric Huss
parent 6b89f5dad8
commit 821d3c423c
2 changed files with 43 additions and 0 deletions

View File

@ -22,6 +22,7 @@
- [Tables](individual/table.md)
- [Tasks](individual/task.md)
- [Strikethrough](individual/strikethrough.md)
- [MathJax](individual/mathjax.md)
- [Mixed](individual/mixed.md)
- [Languages](languages/README.md)
- [Syntax Highlight](languages/highlight.md)

View File

@ -0,0 +1,42 @@
# MathJax
Fourier Transform
\\[
\begin{aligned}
f(x) &= \int_{-\infty}^{\infty}F(s)(-1)^{ 2xs}ds \\\\
F(s) &= \int_{-\infty}^{\infty}f(x)(-1)^{-2xs}dx
\end{aligned}
\\]
The kernel can also be written as \\(e^{2i\pi xs}\\) which is more frequently used in literature.
> Proof that \\(e^{ix} = \cos x + i\sin x\\) a.k.a Euler's Formula:
>
> \\(
\begin{aligned}
e^x &= \sum_{n=0}^\infty \frac{x^n}{n!} \implies e^{ix} = \sum_{n=0}^\infty \frac{(ix)^n}{n!} \\\\
\cos x &= \sum_{m=0}^\infty \frac{(-1)^m x^{2m}}{(2m)!} = \sum_{m=0}^\infty \frac{(ix)^{2m}}{(2m)!} \\\\
\sin x &= \sum_{s=0}^\infty \frac{(-1)^s x^{2s+1}}{(2s+1)!} = \sum_{s=0}^\infty \frac{(ix)^{2s+1}}{i(2s+1)!} \\\\
\cos x + i\sin x &= \sum_{l=0}^\infty \frac{(ix)^{2l}}{(2l)!} + \sum_{s=0}^\infty \frac{(ix)^{2s+1}}{(2s+1)!} = \sum_{n=0}^\infty \frac{(ix)^{n}}{n!} \\\\
&= e^{ix}
\end{aligned}
\\)
>
Pauli Matrices
\\[
\begin{aligned}
\sigma_x &= \begin{pmatrix}
1 & 0 \\\\ 0 & 1
\end{pmatrix} \\\\
\sigma_y &= \begin{pmatrix}
0 & -i \\\\ i & 0
\end{pmatrix} \\\\
\sigma_z &= \begin{pmatrix}
1 & 0 \\\\ 0 & -1
\end{pmatrix}
\end{aligned}
\\]